

Least Squares

Department of Computer Engineering Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u> Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

Table of contents

01

02

Introduction

Solution of Least squares problem

O3 Least squares problem with constraints

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

Introduction

Introduction

Linear Equation

Ax = b has solution.

Least Squares Error Correction

Ax = b has no solution.

 \bigcirc

Introduction

- Fill this page with my notes on the board 😁
 - o Least square in \mathbb{R}^2 and regression!!!
 - o Error
 - o Outlier

What is the problem?

 \Box A is $m \times n$ matrix

 \Box Ax = b has no solution -> b is not in the C(A) why?

How to solve the problem?

- **D** Bad News: Ax = b has no solution
- Good News: $A\hat{x} = p$ has solution
 - O Unique = Least Square
 - Many = SVD

Normal Equation (Method 1)

Note

The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ coincides with the nonempty set of solutions of the normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$.

Method 1

- $\circ \quad C(A^T) \perp N(A)$
- $\circ \quad C(A) \perp N(A^T)$

As we know from previous lectures, the subspace orthogonal to C(A) is $N(A^T)$. So, $(b - A\hat{x}) \in N(A^T)$. Therefore, $A^T(b - A\hat{x}) = 0$ $\Rightarrow A^Tb = A^TA \hat{x}$ $\Rightarrow \hat{x} = (A^TA)^{-1}A^Tb$

Look another way!!

- When b is not in range(A)[C(A)], we can project b on C(A) and then find x where Ax=Pb
- $(A^T A)^{-1} A^T$ is the left inverse of A
- $A(A^T A)^{-1} A^T$ is the projection matrix on C(A)

$$\hat{x} = (A^T A)^{-1} A^T b$$

What will happen when A is an invertible matrix? A is square invertible matrix and solution is $(A)^{-1}b$

 \bigcirc

Least Squares Problem Unique Solution

Theorem

A has linearly independent columns, then below vector is the unique solution of the least squares problem

pseudo-inverse of a left-invertible matrix

□ Proof?

 \cap

Solving with Derivation (Method 2)

Example

□ Normal equations of the least squares problem $A^T A x = A^T b$

 \Box Coefficient matrix $A^T A$ is the

□ Equivalent to $\nabla f(x) = 0$ where f(x) =

□ All solutions of the least squares problem satisfy the normal equations

 $\hat{x} = (A^T A)^{-1} A^T b$

Let's write in vector and matrix form with derivation

Ο

Solving with QR Factorization (Method 3)

Example

 \Box Rewrite least squares solution using *QR* factorization A = QR

\Box Complexity: $2mn^2$

Algorithm: Least squares via QR factorization Input: $A : m \times n$ left-invertible Input: $b : m \times 1$ output: $x_{LS} : n \times 1$ Find QR factorization A = QRCompute Q^Tb Solve $Rx_{LS} = Q^Tb$ using back substitution

□ Identical to algorithm for solving Ax = b for square invertible A, but when A is tall, gives

least squares approximate solution

 \bigcirc

Another problem? $\hat{x} = (A^T A)^{-1} A^T b$

Theorem

 \Box If A has linearly independent columns, then $A^T A$ is invertible.

$$\hat{x} = (A^T A)^{-1} A^T b$$
$$= A^{\dagger} b$$
pseudo-inverse of a left-invertible matrix

Therefore, when $A^T A$ is invertible, \hat{x} is the unique solution. This often happens when for D number of variables and N number of equations, we have $D \ll N$.

What will happen when $A^T A$ is not an invertible matrix? (when N < D)

 \bigcirc

When *A^TA* is not an invertible matrix?

 $X^T X$ will not be invertible when N < D. To illustrate why we have infinite number of solutions, consider in a two-dimensional problem (D = 2) we have only one training sample $x_1 = [1, -1], y_1 = 1$. We can see w = [a+1, a] for any $a \in \mathbb{R}$ will get 0 training error:

$$w^T x_1 = a + 1 - a = 1 = y_1.$$

This is true for any problem with N < D—in this case, you can always find a vector in the null space of X (a vector such that $X\boldsymbol{v} = 0$), and then for a solution \boldsymbol{w}^* , any vector with $\boldsymbol{w}^* + a\boldsymbol{v}$ with $a \in \mathbb{R}$ will get the same square error with \boldsymbol{w}^* . This case (N < D) is also called the **under-determined** problem, since you have too many degree of freedom in your problem and don't have enough constraints (data).

CE282: Linear Algebra

О

Good News!!! (When A^TA is not an invertible matrix)

 $\hat{x} = (A^T A)^{-1} A^T b$ will have infinite number of solutions in this case

In fact, given any real $m \times n$ -matrix A, there is always a unique x^+ of minimum norm that minimizes $||Ax - b||^2$, even when the columns of A are linearly dependent.

the following approach to find the **minimum-norm solution** w^+ : Let $\mathcal{W} = \operatorname{argmin}_{w} \|Xw - y\|^2$ denote the set of solutions, we aim to find the minimum norm solution that

$$\boldsymbol{w}^{+} = \underset{\boldsymbol{w} \in \mathcal{W}}{\operatorname{argmin}} \|\boldsymbol{w}\|_{2}.$$
 (4)

CE282: Linear Algebra

SVD (Method 4)

- When $A^T A$ is not invertible, we can't apply the 3 mentioned methods!
- For $A_{N \times D}$ with N < D, by using SVD:

 $Ax = b \Rightarrow V\Sigma U^T x = b \Rightarrow x = U\Sigma^+ V^T b$

where Σ^+ is formed by taking the reciprocal of the non-zero singular values. But it is the minimum norm two solution.

How can we find all possible solutions?

If $\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b}$ is one solution (the minimum-norm one), then all solutions are of the form:

 $\mathbf{x} = \mathbf{x}_0 + \mathbf{z}$ where $\mathbf{z} \in \text{null}(\mathbf{A})$

You can extract the null space from the SVD:

• The last n-r columns of ${f V}$ (where $r={
m rank}({f A})$) span the null space of ${f A}$

So:

$$\mathbf{x} = \mathbf{x}_0 + \sum_{i=r+1}^n lpha_i \mathbf{v}_i$$

where \mathbf{v}_i are the right singular vectors in the null space and $lpha_i \in \mathbb{R}$

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

Solving least squares problems

Example

a 3×2 matrix with "almost linearly dependent" columns

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-5} \\ 0 & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} 0 \\ 10^{-5} \\ 1 \end{bmatrix},$$

round intermediate results to 8 significant decimal digits

□ Solve using learned methods

□ Which one is more stable? Why?

 \cap

03 Least squares problem with constraints

Review: Linear-in-parameters model

Note

 \Box we choose the model $\hat{f}(x)$ from a family models

 $\hat{f}(x) = \theta_1 f_1(x) + \theta_2 f_2(x) + \dots + \theta_p f_p(x)$ model parameters scalar valued basis functions (chosen by us)

Solution of weighted least squares

Example

□ weighted least squares is equivalent to a standard least squares problem

minimize

nize
$$\left\| \begin{array}{c} \sqrt{\lambda_1}A_1 \\ \sqrt{\lambda_2}A_2 \\ \vdots \\ \sqrt{\lambda_k}A_k \end{array} \right\|_{x} - \left\| \begin{array}{c} \sqrt{\lambda_1}b_1 \\ \sqrt{\lambda_2}b_2 \\ \vdots \\ \sqrt{\lambda_k}b_k \end{array} \right\|_{x}$$

Solution is unique if the *stacked matrix* has linearly independent columns
 Each matrix A_i may have linearly dependent columns (or be a wide matrix)
 if the stacked matrix has linearly independent columns, the solution is

$$\hat{x} = \left(\lambda_1 A_1^T A_1 + \dots + \lambda_k A_k^T A_k\right)^{-1} \left(\lambda_1 A_1^T b_1 + \dots + \lambda_k A_k^T b_k\right)$$

 \cap

Lagrange multiplier

Example

 $f(x) = \min(x_1 x_2)$ $g(x) = 1 - x_1 - x_2$ g(x) = 0

 $L(x,\lambda) = f(x) + \lambda g(x)$ $\nabla_x f(x) = 0$

CE282: Linear Algebra

Constrained Least Square

Example

 $\Box \begin{cases} \min_{x} ||Ax - b||^{2} & A: m \times n \\ s.t. & Cx = d & C: p \times n \\ L(x,\lambda) = ||Ax - b||^{2} + \lambda^{T}(Cx - d) \end{cases}$ $\begin{cases} \nabla_{x}L = 2A^{T}Ax - 2A^{T}b + C^{T}\lambda = 0 \\ \nabla_{\lambda}L = Cx - d = 0 \end{cases} \rightarrow \begin{bmatrix} 2A^{T}A & C^{T} \\ C & 0 \end{bmatrix} \begin{bmatrix} x^{*} \\ \lambda^{*} \end{bmatrix} = \begin{bmatrix} 2A^{T}b \\ d \end{bmatrix}$