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Introduction

$70°000 ? $160°000
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Linear Equation

Ax = b has solution.

20

$160°000

Price ($10°000)

Size of the House
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Least Squares Error Correction

Ax = b has no solution.

20 '

$16’000
15 e it e el e s e ', The price would be:
O $80°000
™ $120°000
 $190°000

Price ($10°000)

B

Size of the House &
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Introduction

e Fill this page with my notes on the board €2
o Least square in R? and regression!!!
o Error

O o Qutlier
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What is the problem?

Ais m X n matrix
Ax = b has no solution -> b is not in the C(4) why?




How to solve the problem?

 Bad News: Ax = b has no solution
O Good News: AXx = p has solution
o Unique = Least Square

O o Many =SVD
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Normal Equation (Method 1)

Note

The set of least-squares solutions of Ax = b coincides with the
nonempty set of solutions of the normal equations AT Ax = ATb.

So b — Ax should be »b
orthogonal to C(A) B Col A
/_f-/ \\\\\. : ,// /._-///[EH R ;‘- -__;.;.. ’-{l - ﬁ - Ai
Cold v 1 ~—_ subspace of R" -

The vector b is closer to AX

"hanto dx for other x The least-squares solution X is in ",



Method 1

o C(ATH) LN
o C(4) LN(AD

As we know from previous lectures,

the subspace orthogonal to C(A) is
N(AT). So, (b — Ax) € N(AT).
Therefore, AT(b — A%) = 0

> ATh =ATA %

=% = (ATA)ATh

C(AT) C(A)

Column
space
All Ax

dim=r
b dim=r
0)
dim=n-r dim=m-r
Left null
Null space
u s_pace ATy -0
Ax =0

N(4) Ax=A(x, +x,)= Ax_+ Ax, = Ax, N(AT)




Look another way!!

o
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When b is not in range(A)[C(A)], we can project b on C(A)
and then find x where Ax=Pb

(ATA)~1AT is the left inverse of A
A(ATA)~1AT is the projection matrix on C(A)

£=(ATA)14Th

What will happen when A is an invertible matrix?
A is square invertible matrix and solution is (4)~1b
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Least Squares Problem Unique Solution

Theorem
QO A has linearly independent columns, then below vector is the unique solution of the least
squares problem
minimize ||Ax — b||”
£=(ATA)1ATD
- 4'p

Q Proof? \

pseudo-inverse of a left-invertible matrix



Solving with Derivation (Method 2)

Example

1 Normal equations of the least squares problem ATAx = ATh
) Coefficient matrix ATA is the ...
U Equivalent to Vf(x) = 0 where f(x) =

[ All solutions of the least squares problem satisfy the normal equations

£ = (ATA)1A4Th

Let’s write in vector and matrix form
with derivation



R1: 9x fx) 2xTB if B is symmetric
Method 2 R2: 258 = "
d(Ax — b)T (Ax — b) R3: 2220 — g7
=0
0x

d(x"A"Ax —x"A"b — b"Ax + b"b)

O B 0x

o(x"aTax) o@x'A"p) a(bT Ax)

0x 0x dx
AT A is symmetric @ @ @
= 2xTATA—bTA—bTA=0
= ATAx = A"b
=>x=(4TA) 147D
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Solving with QR Factorization (Method 3)

Example

O Rewrite least squares solution using QR factorization A = QR

Algorithm: Least squares via QR factorization

Input: A : m X n left-invertible

Input: b : mx1

output: x;s: n X1

Find QR factorization A = QR

Compute QTh

Solve Rx;s = QT b using back substitution

Q Complexity: 2mn?

Q Identical to algorithm for solving Ax = b for square invertible A, but when A is tall, gives

least squares approximate solution



Another problem?

%= \AT b

Theorem

Q If A has linearly independent columns, then AT Ais invertible.

o= (ATA)‘lATb Therefore, when AT A is invertible, % is the unique
o solution. This often happens when for D number of
_ fTb variables and N nhumber of equations, we have D « N.

What will happen when A" A is not an

pseudo—inverse of a left—invertible matrix invertible matrix? (when N < D)



When AT A is not an invertible matrix?

XT X will not be invertible when N < D. To illustrate why we have infinite
number of solutions, consider in a two-dimensional problem (D = 2) we have
only one training sample x; = [1, —1],y; = 1. We can see w = [a + 1, a] for any
a € R will get 0 training error:

melzaJrl—a:l:y]_.

This is true for any problem with N < D—in this case, you can always find
a vector in the null space of X (a vector such that Xv = 0), and then for a
solution w™, any vector with w* + av with a € R will get the same square error
with w*. This case (N < D) is also called the under-determined problem,
since you have too many degree of freedom in your problem and don’t have

enough constraints (data).



Good News!!! (When 474 is not an invertible matrix)

: =Tb

will have infinite number of solutions in this case

In fact, given any real m X n-matriz A, there s al-
ways a unique = of minimum norm that minimizes
|Az —b||°, even when the columns of A are linearly
dependent.

the following approach to find the minimum-norm solution wt: Let W =
argmin,, || Xw — y||* denote the set of solutions, we aim to find the minimum
norm solution that

w’ = argmin ||w||2. (4)
wew

SVD °



SVD (Method 4 )

« When AT Ais not invertible, we can’t apply the 3 mentioned methods!
o For Ayyp With N < D, by using SVD:

Ax =b=>VZUTx=b=>x=UZ*V'b
where X% is formed by taking the reciprocal of the non-zero singular
values. But it is the minimum norm two solution.
How can we find all possible solutions?

If xg = ATh is one solution (the minimum-narm one), then all solutions are of the form:
X =Xp+2z wherez ¢ null(A)

You can extract the null space from the SVD:

e Thelastn — r columns of V (where 7 = rank(A }) span the null space of A

* So:

n
X =Xy + Z a;V;
i=r+1l

where v; are the right singular vectors in the null space and a; € R



Solving least squares problems

Example

a 3 x 2 matrix with “almost linearly dependent” columns

1 -1 0
0 10—5], b = [10—5‘,
0 0

round intermediate results to 8 significant decimal digits

A=

O Solve using learned methods

O Which one is more stable? Why?
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Least squares
problem with
constraints




Review: Linear-in-parameters model

Note

Q we choose the model f(x) from a family models

FO) =0, f1(x) + 0,15(x) + - + O, f, (x)
/ /

model parameters



Solution of weighted least squares

Example

O weighted least squares is equivalent to a standard least squares problem

T4 ]

minimize \/’1—_2‘42

A A

g
VAz2b,

/2 be

2

QO Solution is unique if the stacked matrix has linearly independent columns

O Each matrix A; may have linearly dependent columns (or be a wide matrix)

Q if the stacked matrix has linearly independent columns, the solution is

£=(MATA + -+ AkAiAk)‘l(AlA{bl + -+ A, ALDy)



Lagrange multiplier
Example
f(x) = min(x;x;)
gx)=1-x; —x,
gx) =0



Constrained Least Square

Example
0 gcnin||Ax—b||2 A:mXxXn
s.t. Cx=d C:pXn

L(x, 1) = ||Ax — b||* + AT(Cx — d)

Vil = 24TAx = 24Th +CTA=0 _ 2ATA cT] [ ] [ZATb]
V,L=Cx—d=0 A
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